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Summary. Continuing previous wotk, we discuss the problem of approx- 
imating a function f on the interval [0, 1] by a spline function of degree 
m, with n (variable) knots, matching as many of the initial moments o f f  as 
possible. Additional constraints on the derivatives of the approximation at 
one endpoint of [0, 1] may also be imposed. We show that, if the approxi- 
mations exist, they can be represented in terms of generalized Gauss- 
Lobat to and Gauss-Radau quadrature rules relative to appropriate moment  
functionals or measures (depending on f) .  Pointwise convergence as n--*oo, 
for fixed m>0 ,  is shown for functions f that are completely monotonic on 
[0, 1], among others. Numerical examples conclude the paper. 

Subject Classifications: AMS: Primary 41A15, 65D32; Secondary 33A65; 
CR: GI.2,  GI.4. 

1. Introduction 

In previous papers [4, 6] two of us dealt with the problem of approximating a 
given function f on [0, oo] by a spline function of fixed degree (with variable 
knots) in such a way as to reproduce as many moments of f as possible. 
Having had in mind applications to physics, our functions f=f(r)  were consid- 
ered functions of the radial distance r =  [Ixll of a vector xeP, d, and accordingly 
the moments were "spherical moments".  We now wish to consider the anal- 
ogous problem on an arbitrary finite interval. In this case, the interpretation of 
the independent variable as a radial distance is no longer meaningful, and our 
functions f=f(t),  therefore, are now simply functions of a real variable t on 
some given interval [a, b]. The case of a semi-infinite interval having been 
treated in our previous work, we restrict attention here to the case of a finite 

* The work of the first author was supported by the Ministero della Pubblica Istruzione and by 
the Consiglio Nazionale delle Ricerche. The work of the second author was supported, in part, by 
the National Science Foundation under grant DCR-8320561 



504 M. Frontini et al. 

interval, which can be s tandardized to [a, b] = [0, 1]. The case of the whole real 
line, [a, b] = ~ ,  is also of interest, as is the case of periodic splines. Both, 
however,  appea r  to be less amenable  to the type of analysis we are going to 
give, and will not be considered here. 

2. Spline Approximation on [0, I] 

A spline function of degree m > 0 ,  with n (distinct) knots  z-I,'L 2 . . . . .  T n in the 
interior of  [0, 1], can be wri t ten in terms of t runcated powers  in the form 

S,,m(t)=pm(t)+ ~ av(zv--t)+ , 0_<t_<l, (2.1) 
V = I  

where a v are real numbers  and p,, is a po lynomia l  of degree <m.  (Our choice of 
t runcated powers  distinguishes the right endpoint  of [0, 1] in the sense that  
s,,.,(t) =pro(t), t > 1.) We consider two related prob lems:  

Problem I. Determine  s,,,. in (2.l) such that  

1 1 

~tJs,,m(t)dt= StJf(t)dt, j = 0 ,  1, . . . ,2n+m. (2.2) 
0 0 

Problem I*. Determine  s,,,, in (2.1) such that  

S (k) tD=f(k)(1)  k = 0 ,  1, m, (2.3) 
L n ,  m X  I J x y~ " ' ' ,  

and such that  (2.2) holds for j =0 ,  1 . . . . .  2 n -  1. Here  we must  assume that  f has 
m derivatives at t = 1, all being known. 

Both p rob lems  will be solved in two ways: first in terms of m o m e n t  
functionals, then in terms of Gauss-Christoffel  quadrature .  The former  ap- 
proach  requires only the existence and knowledge of the momen t s  of f in- 
volved;  the latter requires addi t ional  regulari ty of f, but lends itself bet ter  to 
stable implementa t ions .  

2.1. Solution of Problems I and I* by Moment Functionals 

We first consider P rob lem I. Let  

( m + j + l ) !  1 
StJf(t)dt, j = 0 ,  1 . . . .  , 2 n + m ,  (2.4) 

PJ- m!j? o 

where the momen t s  of f on the right are assumed to exist. (They do, of course, 
if f is integrable on [-0, 1].) We define a linear functional  LP on the set of 
polynomials  of the fo rm t "+1P(0,  P~IP2.+m, by 

L~a(t "+1 .  t J )=pj ,  j = 0 ,  1 . . . . .  2n + m .  (2.5) 
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Then the inner product  

(p, q )=  ~(f(t"+ 1(1 _t)m+lp.q) (2.6) 

is well defined for any polynomials  p, q for which p.q~IP2,_ r In particular, we 
can define (if it exists) the monic polynomial  n , ( - ) = n , ( . ;  ~ )  of degree n 
or thogonal  with respect to the inner product  (2.6) to all polynomials  of lower 
degree, 

d e g ~ , = n ,  ~ , ( t ) = t " +  .... (2.v) 
(ft., q )=0 ,  all qelP,_ 1. 

Theorem 2.1. There exists a unique spline function on [0, 1], 

s,,,.(t)=p,,(t)+ ~ a~(%--t)+, 0 < z ~ < l ,  z~4:z u for V4:l 2, (2.8) 
v = l  

satisfying the 2 n + m +  t moment equations (2.2) of Problem I if and only if the 
orthogonal polynomial ~ , ( ' ) = n , ( ' ;  ~ )  in (2.7) exists uniquely and has n distinct 
real zeros %~("), v= 1, 2, ..., n, all contained in the open interval (0, 1). The knots % 
in (2.8) are then precisely these zeros, 

% = ~("), v = 1, 2 . . . . .  n ,  ( 2 . 9 )  

while the coefficients a~ and the quantities 

(which uniquely 
system 

where 

( -  1) k 
bk= m ~  P~)(l), 

determine p,, in (2.8)) 

k =0 ,  1 . . . .  , m, (2.10) 

are obtained uniquely from the linear 

~o(t"+ap)=~(tm+lp) all p~IP.+ m, 

_(n) ~ o ( g ) =  ~ bkg("-k)(1)+ ~ a~g(%), z~=Lv . 
k=O v = l  

(2.11) 

(2.12) 

Proof. Substituting (2.1) in (2.2), and observing that  0 < % <  1, gives 

i n Tv 1 

y, j m ~t~p,,(t)dt+ av~t ( % - t )  d t=~tJ f ( t )d t ,  
o ~=1 o o (2.13) 

j=O,  1 . . . .  , 2 n + m .  

Changing variables, t = z %, in the v-th integral of the summation,  one obtains 

rv 1 

tJ(zv- t)" dt = z m +j+1 ~ z j(1 _ z)" dz 
o o (2.14) 

= j ! m !  r 

( m + j + l ) ! - v  " 
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Using m integrations by parts in the first integral of (2.13) yields 

a j!m! m [ d m - k  l + j ]  , 
! t2pm(t) dt =(m + j +  1)! k~=O bk [d~ W~ tin+ (2.15) 

~ t = l  

where b k is defined in (2.10). Inserting (2.14) and (2.15) in (2.13) and dividing 
through by j ! m !/(m + j  + 1) ! gives 

~o(tm+l.tJ)=#j, j = 0 , 1  . . . . .  2n+m, 

where pj is defined by (2.4) and 5('o by (2.12). Therefore, using (2.5) and the 
linearity of ~o  and ~9~, 

~o(tm+lp)=Sf(t'+lp), all p~IP2,+m. (2.16) 

Thus, the moment equations (2.2) and Eqs. (2.16) are equivalent. 
Let now 7~, denote the "knot polynomial" 

n 

~,(t)= 1-[ (t--%) (2.17) 
v = l  

having the knots z~ of the spline (2.8) as zeros. Then, by the definition of the 
inner product (2.6) we have, for any qeIP,_ 1, 

(~,, q)= ~L~~ 1(1-- t )m+l~, 'q)=~o(tm+l(1-- t )"+l~, 'q) ,  (2.18) 

by (2.16), since ( 1 - 0  "+1 ~,.qeIP2,+, .. Therefore, (~,, q)=0 by the definition 
(2.12) of ~o  and the fact that 7r,(zv)=0, v= 1,2 . . . . .  n. It follows that the knots 
% must be the zeros of the orthogonal polynomial ~,(.; 5r of (2.7). This proves 
the necessity of the condition asserted in Theorem 2.1. Furthermore, the system 
(2.11) is a trivial consequence of (2.16); with z~= ~t")~ determined, (2.1l) is 
essentially a confluent Vandermonde system, hence nonsingular. 

To prove the sufficiency of the condition, together with (2.11), we must 
show that they imply (2.16). Thus, let pelP2,+m be an arbitrary polynomial of 
degree<2n+m.  Let q and r be the quotient and remainder of p upon division 
by ( 1 - 0  "+1 ~,(t), where ~ , ( . )=~, ( . ;  ~r 

p(t)=(1-t)~+ln,(t)q(t)+r(t), q~IP,_l, r~lP +,,. (2.19) 
Then, 

s 1 p) = ~q(tm+ 1(t _ t)m+ 1 ~ .  q) + 5r + 1 r) 

= ~( t "+a  r) [by (2.7)] 

= ~o(t"+~ r) [by (2.11)] 

=~o(tm+ip)--~o(t"+l(1--t)m+ln,'q) [by (2.19)] 

= ~o(tm+lp) [since ~,(z~) =0] .  

This proves (2.16). [] 

The solution of Problem I* can be effected similarly, if one observes, in 
view of 0 < % < 1, that 

stk) tD--,4k)tl~ k=0,  1, m. (2.20) 
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By (2.3), therefore, p~)(1)=f(k)(1), k = 0 ,  1 . . . . .  m, so that  the m o m e n t  equat ions 
in quest ion can now be writ ten as 

a~tJ (r~- t )mdt= t ~ | J ( t ) -  2_.~.v ( t - l )  k dt, 
~=1 o o L k=O �9 (2.21) 

j = 0 , 1  . . . . .  2n - -1 .  

In analogy to (2.4) we define 

�9 - - ( m + j - - + l ) ! i t ~ [ f ( t ) - - k ~ = o ~ ( t - - 1 ) k l d t  , P) m! j! o 
(2.22) 

j = 0 , 1  . . . . .  2 n - - l ,  

which gives rise to the linear functional 5r on polynomials  of the form 
tm+ l p(t), pE]P2n_ l, defined by 

&v*(t"+ 1. t J ) = p  *, j = 0 ,  1 . . . . .  2 n - 1 ,  (2.23) 

and the inner product  

(p,q)*=~f*(tm+lp.q), p.q~IP2,_ 1. (2.24) 

The or thogona l  po lynomia l  l r* ( . )=  lr,(.; 5r is now defined by 

deg re* = n, 7r* (t) = t" + .... 
(2.25) 

(~*, q)* = 0 ,  all q~IP,_l .  

Then the result for P rob lem I*, analogous to Theo rem 2.1, is given by the 
following 

Theorem 2.Z There exists a unique spline function on [0, 1], 

s*m(t)=p*(t)+ ~ * * " * * * (2.26) a~(%-t )+,  0 <  l, % ~v < #-~, for v # p ,  
v = l  

satisfying (2.3) and the 2n moment equations of Problem I* if and only if the 
orthogonal polynomial n * ( ' ) = n , ( ' ;  &'~*) in (2.25) exists uniquely and has n dis- 

-(")* v= 1,2, n, all contained in the open interval (0, 1). The tinct real zeros % , ..., 
�9 in (2.26) are then precisely these zeros, knots % 

%* -- %-(")*, v = 1, 2 . . . .  . n, (2.27) 

the polynomial p* is given by 

p * ( t ) = k ~ = o ~ ( t - - 1 ) k ,  (2.28) 

and the coefficients a* are obtained uniquely from the linear system 

~LP~(tm+Xp)=~*(t"+lp), all p~lP,_ 1, (2.29) 
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where 

~*(g)  ~ * * *- - (")*  (2.30) = a~ g(%), % - %  . 
v=l  

The proof is entirely analogous to the proof of Theorem 2.1 and is omitted. 
The functions s,,,, and s,,*,, of Theorems 2.1 and 2.2 may be thought of as 

solutions of finite moment problems in terms of spline functions. 

2.2. Solution of Problems I and I* by Gauss-Christoffel Quadrature 

While the solution of Problems I, I* given in the previous subsection has some 
intrinsic mathematical interest, it is suspect, computationally, because of its 
reliance on the "moments"  (2.4) and (2.22), which are likely to create ill- 
conditioning. For constructive purposes, it is better to reduce these problems 
to Gauss-Christoffel quadrature with respect to an absolutely continuous mea- 
sure, as was similarly done in [-4, 6]. This requires more regularity of f ;  we 
shall assume, in fact, that f~Cm+l[0,1] .  (This hypothesis could be slightly 
weakened.) We also assume that f(k)(1), k=0,  1 . . . . .  m, are known, and that 
f r m (otherwise, trivially, s,,m= f). 

Again, we first consider Problem I. Applying (2.14), (2.15) and m + l  in- 
tegrations by parts to the last integral in the moment equations (2.13) now 
results in 

m r d m-k  1 ~.  
=~0 "/Tin+ 1 +J / t"+l+J/ + a~ bk Ldt~_~ j,_, ~ = ,  

k =  

_ [ dm-k l+j] -t m! 1 - ~ ~bk Ldt-~_k t"+ (--1)m+l !f(m+l,(t) tm+l+Jdt, 
k=O J / = l  

j=O, 1 , . . . , 2n+m,  
where 

(2.31) 

( _  k (k) 1) Pm (1) ( -  1)kf(k)(1) 
bk m! ' (Ok-- m! , k=0,  1 . . . . .  m. (2.32) 

Defining the measure 
( - 1 ) " +  1 

d;t re(t)= m! f(m+l)(t)dt on [0, 1], (2.33) 

we can rewrite (2.31), similarly as in (2.16), in the form 

~q~o(tm+lp)=~(t"+ap), all p~IPz,+m, (2.34) 

where ~0  is defined in (2.12), but ~qa is now defined by 

1 
s = Z 4~k g(m-k)(1) + ~ g(t) d2,,(t). (2.35) 

k=O 0 

The resolution of (2.34) is now verbatim the same as in the proof of 
Theorem 2.1, the inner product again being defined as in (2.6), but now with 
given in (2.35). This yields 
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Theorem 2.3. Assume that f e C " + l [ 0 ,  1]. There exists a unique spline function 
(2.8) on [0,1] satisfying the 2 n + m + l  moment equations (2.2) of ProblemI if 
and only if the orthogonal polynomial 7z,( ')=nn(';  ~Cf) in (2.7) relative to the 
inner product (2.6), (2.35) exists uniquely and has n distinct real zeros z(~ "), 
v = l, 2 . . . . .  n, all contained in the open interval (0, 1). The knots z v in (2.8) are then 
precisely these zeros, 

~(") (2.36) r v = .  ~ , v=  1 ,2 , . . . ,n ,  

while the coefficients av, and the quantities b k in (2.32) (which uniquely determine 
p,, in (2.8)), are obtained uniquely from the linear system 

~o(t"+ l p)==L~(t"+ l p), all p~IP,+m, (2.37) 

where ~o,  5P are defined, respectively, by (2.12) and (2.35). 

The result of Theorem 2.3 has been announced without proof in [5, w 3.3]. 
It can also be interpreted in terms of the generalized Gauss-Lobatto quadra- 
ture formula (relative to the measure d2 m in (2.33)), 

1 

S g (t) d2 .  (t) = ~ [A k g(k)(0) + B k g(k)(1)] 
o k=O (2.38) 

+ ~ 2~)g(Z~v"))+R,,,.(g; d2,,), 
v = l  

where 
R.,,.(g; d2m) =0 ,  all g~]P2n+z,n+l' (2.39) 

This quadrature formula, in turn, is known to be related to the Gauss- 
Christoffel quadrature formula 

1 

Sg(t)da~(t)= ~ ov-(")g(z~v"))+R,(g;d~,.), Rn(]Pzn_l;d6m)=O, (2.40) 
0 v = l  

with respect to the measure 

dam(t)=t"+l(1 - t ) '+ ld )%( t )  on [0, 1]. (2.41) 

Indeed, the nodes -(") in (2.38) and (2.40) are the same (equal to the zeros of "/'V 
7t,(';da,,)), while the weights 2~ ) in (2.38) are expressible in terms of those in 
(2.40) by 

2~ ")= [z~")(1 (") -("~+~) (") (2.42) - %  )] c%, v=  1,2, . . . ,n .  

Furthermore,  the coefficients Ak, B k in (2.38) can be obtained from the linear 
system 

R,,,, (p; d2,.) =0 ,  all p~IP2,,+ ~. (2.43) 

Now we note that the inner product (2.6), in view of (2.35), can be written 
in the form 

1 1 

(17, q)= ~ t"+a(1 - t )"+lp(t)q(t)d2, , ( t )  = ~p(t)q(t)dtr,,(t). (2.6') 
O 0 



510 M.  F r o n t i n i  et  al. 

Therefore, the knots  % in (2.36) are precisely the nodes in (2.40), hence those in 
(2.38). Putt ing g(t)= t "+1 p(t), peIP2,+,  ,, in (2.38) and noting (2.39) yields 

Bk ~ Elm+ x p(t)]t = 1 + 2(,) [Z(,)],~+ 1 p (Z~,)) 
k = O  v = l  

1 

=~t"+lp(t)d2,.(t), all p~IP2.+~, 
0 

which is identical to (2.34), if we identify 

)(n) bk--C~k=B,,_k, k = 0 , 1 , . . . , m ;  av= ~,  v = 1 , 2  . . . . .  n. 

Since under the assumptions of Theorem 2.3 the solution of (2.34) is unique, we 
have shown the following 

Corollary 1 to Theorem 2.3. I f  the conditions of Theorem 2.3 are satisfied, then 
the spline function (2.8) solving Problem I is given by 

z v = z~ "), _~,7 = _v~("), v = 1, 2, ..., n, (2.44) 

where -(") are the interior nodes of the generalized Gauss-Lobatto quadrature 
formula (2.38) [or the nodes of the Gauss-Christoffel formula (2.40)] and 2~ ) the 
corresponding weights in (2.38) [or (2.42)], while 

p~(1)  =f(k)(1) + (  - 1)kin! Bin_k, k = 0 ,  1, ..., m, (2.45) 

where B,,_ k is the coefficient of g("-k)(1) in the Gauss-Lobatto formula (2.38). 

We remark that  the condit ions of Theorem 2.3 are satisfied for each 
m = 0 ,  1,2, ... i f f  is completely monotonic  on [0, 1] (cf. [8, p. 145 ff.]), since d2,,, 
and hence also d ~ ,  is then a positive measure. We have, moreover,  the 
following 

Corollary 2 to Theorem 2.3. I f  f is completely monotonic on [0, 1-1 and for some 
m >= O, 

m! B,,_u+(-1)uf(u)(1)>O, # = 0 ,  1, ..., m, (2.46) 

then so is s,.,, for each n > 1; more precisely, 

1 k o(k) ~,~ ~" > 0 if k = 0, 1 . . . .  , m, (2.47) 
( - - )  ~ 1 = 0  if  k>m, 

for each t6[0,  1] for which s (k) (t~ is defined. n9 my-/ 

Proof The assumption (2.46) implies ( u (u) - 1 )  p,, (1)>0,  p = 0 ,  1 . . . .  ,m, hence the 

positivity on [0,1]  o f ( -  k (k )  [ ~  1) p,, ( t )=(--1)k " - o  (--1)u/~!-~ P~)(1)(1--t)uJ (k) 
] 

for 
# -  

k = 0 , 1 , . . . , m .  Since a~>0,  by (2.44), and (--1)k[(z~--t)+](k)>0, k = 0 , 1  . . . . .  m, 
whenever the derivative exists, the assertion (2.47) follows. [ ]  
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We note that (2.46) restricts only those B 0, B l . . . . .  B., that  are negative. In 
the case of the infinite interval [-0, ~ ] ,  considered in [6], the property (2.47) 
(with > in place of > )  follows directly from (2.8), since Pm(t)=--O. 

Turning now to Problem I*, we note that (2.20) again implies p~)(1) 
=f(k)(1), hence bk=49k, k=0 ,  1 . . . . .  m. The moment  equations in question thus 
simplify to 

~*(tm+lp)=~*(tm+tp),  all p~IPzn_l, (2.48) 

where &,q* is given by (2.30) and _~a. by 

1 

5e*(g) = S g(t) d2,,(t). (2.49) 
0 

The analogue of Theorem 2.2, therefore, is as follows. 

Theorem 2.4. Assume that f ~ C " + a [ 0 ,  1]. There exists a unique spline function 
(2.26) on [0, 1] satisfying (2.3) and the 2n moment equations of Problem I* if and 
only if the orthogonal polynomial 7z*( ' )=n, ( ' ;  ~ * )  in (2.25) relative to the inner 
product (2.24), (2.49) exists uniquely and has n distinct real zeros z(~ ")*, 
v=  1,2 . . . . .  n, all contained in the open interval (0, 1). The knots z* in (2.26) are 
then precisely these zeros, 

* - ~(")* (2.50) z v - - v  , v = l , 2 , . . . , n ,  

the polynomial p* is given by 

k=O K! 

* obtained uniquely from the linear system and the coefficients av are 

Lr all p~lP._a, (2.52) 

where 5fl~, 5fl* are defined, respectively, by (2.30) and (2.49). 

Underlying Theorem 2.4 is now the generalized Gauss-Radau  quadra ture  
formula, 

2 v g(% ) +  ,,,,(g, d2,,), 
o k= 0 ~= 1 (2.53) 

R *  ' ,,.,(g, d2, . )=0,  all g~lP2,+, ., 

or the related Gauss-Christoffel formula 

' i 
* . fg(t)do*(t)= v v'~(")* ~,~,ot,(.)*~- ,,~,, da*), R. ( l P 2 n _  1, d a * )  = 0 (2.54) 

0 v = l  

for the measure 
da*(t)=tm+~d2m(t) on [0, 1]. (2.55) 

Again, the nodes z~ )* in (2.53) and (2.54) are identical, whereas 

2~ ")* = L-vrz(")*lJ -(,,+ 1) v,rr(")*, v = 1, 2, ..., n. (2.56) 
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One has, in fact, 

Corollary 1 to Theorem 2.4. I f  the conditions of Theorem 2.4 are satisfied, then 
the spline function (2.26) solving Problem I* is given by p* as in (2.51) and by 

t* = ~'~")* a* =,~")* v =  1, 2, n, (2.57) 
v ~ v  , - ' v  - ' v  , " " " ,  

where ~-~")* are the interior nodes of the generalized Gauss-Radar formula (2.53) 
[or the nodes of the Gauss-Christoffel formula (2.54)] and 2~ )* the corresponding 
weights in (2.53) [or (2.56)]. 

Corollary 2 to Theorem 2.4. I f  f is completely monotonic on [0, I] then so is * S n, ",  

for each n__> 1, m>=0; more precisely, 

1 ks*(k) t ~ > 0  /f k - 0 ,  1 . . . . .  m, ( - )  , , " , ( )  (2.58) 
= 0  if k>m,  

for each t e l0 ,  1] for which .(k) S.,", (t) is defined. 

The proofs are analogous to the proofs of Corollaries 1 and 2 to Theorem 
2.3 and are omitted. 

To obtain the Gauss-Christoffel formulae in question, one must  be able to 
generate the or thogonal  polynomials  relative to the measures da", and dcr* in 
(2.41) and (2.55), respectively. For  this, the methods discussed in [2] and [3] 
(see also [1, w 5]) are often helpful. 

3. Error and Convergence of Approximation 

Similarly as in [6], the error  of the spline approximants  s.",  and * , S n , " ,  c o n -  

s t r u c t e d  in Sect. 2 can be expressed in terms of the quadra ture  error of the 
generalized Gauss-Lobat to  and Gauss -Radau  formulae (2.38) and (2.53), re- 
spectively, when applied to a special function. This is the content  of the next 
two theorems. 

Theorem 3.1. Assume the conditions of Theorem 2.3 are satisfied. Then, for any x 
with 0 < x < l ,  the spline function s,,", in (2.8), solving Problem I, approximates f 
with an error given by 

f (x ) -s , , " , (x )  = R.,",(px; d2m), (3.1) 

where R,,",(';d2,.) is the remainder term in the generalized Gauss-Lobatto 
quadrature formula (2.38) (relative to the measure d2", in (2.33)) and Px is given 
by 

px( t )=( t -x)+,  0 < t <  1. (3.2) 

Alternatively, we have 

f (x )  - s.,",(x) = R,(ax; d%), (3.3) 

where R,(- ;  dam) is the remainder term in the Gauss-Christoffel quadrature for- 
mula (2.40) (relative to the measure de., in (2.41)) and ax is given by 

ax(t) = t-(",+ 1)( 1 - t) -(",+ n [px(t) - q2",+ l(Px; t)], (3.4) 
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q2m+l(Px; ") being the polynomial of degree<=2m+ 1 interpolating to Px and its 
first m derivatives #k) k = l  2, ..,re, at t=O and t=1. 

Proof By Taylor 's  theorem, 

By (2.44), 

f(X)=k~=O f(k)(1)(X--1)k+~..{(x--t)"f("+l)(t)dt 

= ~ ~ f ( k ' (1 ) ( x - - l )  k~ ( - - 1 ) ' + '  i k=O �9 m! (t-x)mf(m+l)(t)dt 
x 

1 

= ~ l~f'k)(1)(X--1)k+ Ipx(t)d2m(t). 
k=O k ! ~  " " 0 

s,~(x) ~, l ptmk)(l)(x--1)~+ ~ ~") I,) , = ,~ (~ - x ) + .  
k = O  " v = l  

Subtracting this from the preceding equation gives 

f(x)--S,,m(X ) = ~p~(t) d2,,(t)+ k.T If(k)(1)--ffd)(1)] (x - 1) k 
0 k = O  

(n) (n) m 
- ,~ (~ - x ) + ,  

v = l  

which, by virtue of (2.45) and (3.2), yields 

But 

so that 

1. ~ m! ~ ,~ p~( ~ ). 
f(x)--s, ,m(x)= jp~(t)d2m(t)- )_f, ~ .B, . -k(1--X)  k -  (") Zt,) 

0 k = O  " v = l  

m~ 
p?'(0)=0, p~)(1)- ( l -x )  m-~, k=0,1 ..... m, 

(m-k) !  

R ~(m-k)~l ~(n) D (T (n)) f (x)-s , , , . (x)=~Px(t)d)c, , ( t )-  ~m-kVx , ' ) - -  - . . . .  -~ , 
0 k = O  v = l  

= R,,,,(px; d2,,), 

as claimed in (3.1). 
To prove (3.3), it suffices to  observe that for any function h that  has zeros 

of multiplicity m +  1 at t=O and  t =  1 one  obtains from (2.38), (2.40) and (2.42), 
by putting g ( t )= t  - ("+ ~)(1 - t )  -(m+ 1)h(t) in (2.40), that 

R,(t-(,,+ 1)(1 _ t)-(,,+ 1)h; dam) = R,, m(h; d2,.). (3.5) 

In particular,  for h(t)=px(t)-q2,,+l(p~; t), since R,,,,(qz,~+l;d)~m)=O, one gets 
R,,m(px; dX,,)=R,,m(px-qz~+l;d2m)=R,(ax; dam), with ax given by (3.4). [ ]  

Theorem 3.2. Assume the conditions of Theorem 2.4 are satisfied. Then, for any x 
with 0 <x < 1, the spline function s,*,,, in (2.26), solving Problem I*, approximates 
f with an error given by 
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f (x) - s* ,, (x) = R,* m (Px; d2m), (3.6) 

, 'here * ." R, , , , (  , d2m) is the remainder term in the generalized Gauss-Radau quadra- 
ture formula (2.53) (relative to the measure d). m in (2.33)) and Px is given by (3.2). 
Alternatively,  we have 

f ( x ) - - S * m ( X ) =  * * * R ,  (ax ; dam), (3.7) 

where * "" R , ( , d a * )  is the remainder tern, in the Gauss-Christoffel quadrature 
�9 is given by formula (2.54) (relative to the measure da* in (2.55)) and ax 

a * ( t ) = t - ( " + l ) p ~ ( t ) = t - { m + l ) ( t - x ) + ,  0_<t_< 1. (3.8) 

Proof  Equat ion (3.6) is proved similarly as Eq.(3.1) in Theorem 3.1. The 
�9 . " - * * ' d o ' * ) .  alternative formula (3.7) follows readily from Rn,m(Px , d z m ) -  R n (a x , [] 

I f f e c m + l [ 0 ,  1] is such that d2 m in (2.33) is a positive measure (for example, 
i f f  is completely monoton ic  on [0, 1]), then the approximat ions  Sn, m and s,, m ~* 
exist uniquely by Theorems 2.3 and 2.4, respectively. Moreover ,  for fixed m > 0  
and x, with 0 < x < 1, we have 

R. (a~ ;da , . )~O as n--*~ 

since a x is cont inuous on [-0, 1] and da m is also a positive measure. Therefore,  
by (3.3), we have pointwise convergence s , , m ~  f as n--*~.  The analogous fact 
for s,,* m follows likewise from (3.7) and the continuity of a* on [0, 1]. Thus, we 
have 

Theorem 3.3. I f  f ~ c m + l [ O ,  1] and d2 m in (2.33) is a positive measure, then the 
approximations s o,,. and s,,* m constructed in Sect. 2 converge pointwise to f in 
(0, 1), as n ~ oo for  f i x e d  m > O. 

We finally note that the formulas (3.1) and (3.3), resp. (3.6) and (3.7), by 
differentiating them repeatedly with respect to x, yield representations for the 
e r r o r s  f ( k )  s.,(k),, and ~f(k)--s*(k)-n,m in the derivatives, respectively. 

4. Examples 

We illustrate the spline approximat ions  of Theorems 2.3 and 2.4 (or their 
corollaries) in the case of exponential  and t r igonometr ic  functions. All com- 
putations reported on were carried out on the CDC 6500 computer  in single 
precision (machine precision ~3.55  x 10-15). 

Example 4.1. f ( t ) = e - " ,  0 < t <  1, c > 0 .  

This is an example of a completely monoton ic  function, for which the 
associated measure (2.33) is thus positive; indeed, 

cm+ 1 
d 2 m ( t ) = ~ e - " d t  on [0, 1]. (4.1) 

m ~  
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Problems I, I* therefore have unique solutions by Theorems 2.3 and 2.4. In 
terms of the generalized Gauss-Lobatto formula 

1 

~g ( t ) e - a d t =  ~ [Akg(k)(o)+Bkg'k)(1)] + L y(") (") - " e - a  2 v g(zv )+R,, , , (g,  dt) (4.2) 
0 k = 0  v = l  

and the generalized Gauss-Radau formula 

1 

g(t)e ct dt ~ A* g(k'(0)+ L 2~Y(")* g(z~(")*)+ -* " = R.,.,(g, e-Ctdt), (4.3) 
0 k = 0  v = l  

we have from Corollary 1 to Theorem 2.3, 

C m + 1 

L. = z~ ), a,. = ~ ;~"), v = 1, 2 . . . .  , n, 

(4.4) 
c m +  1 m T 

5" m:[ck-m- le -C+B, ,  k](1--t) k p,,(t) = ~  
�9 ~ o k !  L 

for the spline s,,,, in (2.8), solving Problem I, and from Corollary 1 to Theorem 
2.4, c m +  1 _ 

* : T(n)* , = _  ) ( n ) *  z v _,, , a~ m! "~ ' v = l , 2 , . . . , n ,  
(4.5) 

c m + l  m mt 
p*(t) = _ _  y """ c k- , . -  1 e - C ( 1  ~ t ~ k  

m! k~--o k! 

for the spline s.,*,, in (2.26), solving Problem I*. 
The Gaussian nodes and weights in (4.2) and (4.3) were obtained in the 

usual way (see, e.g., [2, p. 290]) in terms of the eigensystems of the Jacobi 
matrices J,( tm+l(1-t)"+le-~tdt)  and J,(tm+le-C~dt), respectively. The latter 
were generated from the Jacobi matrix Jn+zm+z(e-~'tdt), resp. J,+,,+l(e-Ctdt), 
by repeated application of the algorithms in [3, w corresponding to multi- 
plication of a measure by t ( 1 - t )  and t, respectively. (Alternatively, algorithms 
based on the QR algorithm, as in [-7], could be used for the same purpose.) 
Finally, Jn+2m+z(e-~tdt) was computed by the discretized Stieltjes algorithm 
(see [2, w the Fej6r quadrature rule having been used as the modus of 
discretization. 

As to the coefficients Ak, B k in the boundary terms of (4.2), they were 
computed from the linear system of equations 

/~,,m(P; e-~'dt) =0, all pElP2m+l , (4.6) 

where the first 2 m + 2  orthogonal polynomials {rCk('; e-~tdt)}k>=O (whose Jacobi 
matrix J,+2m+2 has already been generated!) were used as basis in the poly- 
nomial space IP2,,+ 1 of (4.6). The coefficients 4 "  in (4.3) are not needed. 

The accuracy of the spline approximations S,,m and S,,*m thus obtained is 
shown in Table 4.1 for n=5 ,  10, 20, 40; m=0(1)3;  and c = 1 , 2 , 4 .  Displayed are 
(two-digit approximations to) the respective maximum absolute errors on 
[o, 13. 
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Table4.1. Accuracy of the spline approximations s,,~, and s.,,.* for Example 4.1. (Numbers in 
parentheses denote decimal exponents). 

c n max [s,,m(t)-e c,] max Is*m(t)-e ctl O=<t=<l O<t_<l 

m=O m=l m=2 m=3 m=O m=l m=2 m=3 

1 5 8.0(-2) 2.4(-3) 4.0(-5) 9.7(-7) 8.8(-2) 3.3(-3) 6.8(-5) 2.4(-6) 
10 4.6(-2) 8.6(-4) 8.6(-6) 1.4(-7) 4.8(-2) 1.0(-3) 1.2(-5) 2.5(-7) 
20 2.5 (-2) 2.6 (-4) 1.5 (-6) 1.5 (-8) 2.5 (-2) 2.9 (-4) 1.9 (--6) 2.1 (-8) 
40 1.3(-2) 7.3(-5) 2.4(-7) 1.4[-9) 1.3(-2) 7.7(-5) 2.7(--7) 1.6(-9) 

5 1.3(-1) 7.0(-3) 2.1(-4) 9.8(-6) 1.3(-1) 9.1(-3) 3.8(-4) 2.4(-5) 
10 7.1(-2) 2.4(-3) 4.6(-5) 1.5(-6) 7.5(-2) 2.8(-3) 6.5(-5) 2.6(-6) 
20 3.9(-2) 7.4(-4) 8.4(-6) 1.6(-7) 4.0(-2) 8.1(-4) 1.0(-5) 2.3(-7) 
40 2.0(-2) 2.1(-4) 1.3(-6) 1.4(-8) 2.0(-2) 2.2(-4) 1.4(-6) 1.7(-8) 

5 1.7(-1) 1.6(-2) 8.7(-4) 7.8(-5) 1.7(-1) 1.9(-2) 1.5(-3) 2.5(-4) 
10 1.0(-1) 5.7(-3) 2.0(-4) 1.1(-5) 1.l(-1) 6.7(-3) 2.7(-4) 2.0(-5) 
20 5.7(-2) 1.8(-3) 3.6(-5) 1.3(-6) 5.8(-2) 2.0(-3) 4.3(-5) 1.8(-6) 
40 3.0(-2) 5.1 (-4) 5.7 (-6) 1.2 (-7) 3.0 (-2) 5.3 (-4) 6.2 (-6) 1.4 (-7) 

For  m = 0 ,  1, and 3, the maxima are almost  always attained at a knot  of the 
spline, about  half-way (or somewhat  less) through the interval. The only 
exception observed was for s,,,,,* n = 5, m = 3, c =4 ,  where the maximum occurs 
at t = 0 .  When m--2 ,  the maxima are usually attained between two such knots. 
The linear system (4.6) (in the or thogonal  basis mentioned) was found to be 
relatively well-conditioned, the worst condit ion number  (occurring for m = 3 )  
being approx. 2.5 x 10 3. 

It is seen that  the approximat ion  error is more  easily reduced by increasing 
m rather than n. Also, the spline s,, m is only marginally more  accurate than the 
spline s,*,m. The addit ional ~ffort required in comput ing  s,,m, therefore, seems 
hardly justified, if uniform approximat ion  is indeed the main objective. If 
moment -match ing  is more  important ,  however, the spline s,, m would be prefer- 
able, as it matches m + 1 addit ional moments.  

The coefficients of  p,~, i.e., the expressions in the brackets of (4.4), turned 
out  to be positive for all values of m,n  and c tried, so that the computed  
splines s,, m are completely mono ton ic  in the sense of (2.47). The analogous 
proper ty  for s.,*,, follows from Corol lary  2 to Theorem 2.4. 

Example 4.2. f ( t )  = sin 2 t, 0 -< t -< 1. 

Here, the function f, though not  completely monotonic ,  still has derivatives 
that are all of constant  sign on [0, 1]. Therefore, the measure d2 m in (2.33), i.e., 

dRm(t)=(-1)tm/21+~ / c ~  
m' (2)m+ 1 / T~I dt 

[ s i n ~ t ]  

on [-0, 1], (4.7) 
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where the cosine or sine is taken according as m is even or odd, admits  a 
unique system of (monic) or thogonal  polynomials ,  and Problems I and I* both 
have unique solutions for each m and n. Observing that  the subst i tut ion t-+ 
1 - t  carries the cosine into the sine, and vice versa, it suffices to generate the 
or thogona l  polynomials  for one of the t r igonometr ic  measures  only, say 
cos((=/2)t)dt. If e~,, fl~,, are the coefficients in the corresponding recurrence 
relation 

lZk+l( t )=( t - -O~k)gk( t ) - - f l k~Zk_l ( t ) ,  k=O,  1, 2 . . . . .  
(4.8) 

= _ l ( t ) = 0 ,  rc0(t)=l ,  

then the coefficients ~,, fl~, for the s ine-measure are 

~, = 1 - ~,, fl~,: fl~,, k = 0, 1, 2, . . . .  (4.9) 

A similar r emark  applies to the generalized Loba t to  measures  (2.41) [but  not 
to the generalized Radau  measures  (2.55)]. The  constants  mult iplying the 
t r igonometr ic  measures  in (4.7), of course, simply give rise to analogous  multi-  
plicative constants  in the quadra ture  rules (2.38) and (2.53). 

Techniques similar to those in Example  4.1 were used to compute  the 
desired spline approx iman t s  in the present  example.  

Table 4.2. Accuracy of the spline approximations s,, m and s*.,. for Example 4.2. 

n max s, ( t ) -s in~- t  max s*m( t ) - s i n2 t  
o-<t<l .m 2 o~,<~ ' 

m=O m = l  m=2 m=3 m=O m = l  m=2 m=3 

5 1 .4( -1)  6 .5 ( -3 )  1 .7 ( -4 )  6 .2 ( -6 )  1 .5( -1)  8 .8 ( -3 )  2 .7 ( -4 )  1 .5( -5)  
10 8.4 ( - 2 )  2 . 4 ( -3 )  3.7 ( - 5 )  9.4 ( - 7 )  8.8 ( - 2 )  2.8 ( - 3 )  5.0 ( - 5 )  1.6 ( - 6 )  
20 4.6 ( - 2 )  7.6 ( - 4 )  6.8 ( - 6 )  1.I ( - 7 )  4.7 ( - 2 )  8.2 ( -4 )  8.2 ( -6 )  1.4 ( - 7 )  
40 2.4 ( - 2 )  2.1 ( - 4 )  1.1 ( - 6 )  9.6 ( - 9 )  2.4 ( - 2 )  2.2 ( - 4 )  1.2 ( - 6 )  1.1 ( - 8 )  

Their  accuracy is shown in Table  4.2; the error behaves rather  similarly as the 
error in Example  4.1 for c = 2. 
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